当前位置:主页 > 硕博论文 > 工程博士论文 >

TiO 2 Based Multishelled Hollow Spheres for Photocatalytic W

发布时间:2022-01-02 12:21
  一直以来,能源与环境问题都是全球范围内的热点问题。随着化石能源的日益枯竭和与之带来的环境污染等问题,开发廉价、来源广泛的清洁能源变得尤为重要。太阳能作为一种来源广泛,无污染的可再生能源受到人们广泛的关注。目前,利用太阳能的主要方法之一就是将太阳能转化为化学能。由于太阳能的能量密度非常低且不均匀,太阳能的有效利用变得尤为重要。在这项工作中,我们分析了太阳能水分解中的挑战和问题,以及合成独特的纳米结构材料并将其应用于太阳能水分解。TiO2和Fe2O3能满足太阳能水分解的几个主要要求。常用的二氧化钛的缺点是大带隙(~3.2eV),仅能吸收占太阳能光谱4%的能量并且载流子少。Fe2O3吸收可见光,占太阳能光谱的46%,在水溶液中稳定,无毒无害,成本低廉。然而,赤铁矿的低电导率破坏了电荷产生、运输、收集和注入过程的连续性,导致由于快速电子-空穴复合而使得能量显著损失。解决Fe2O3和TiO2内在缺陷的一个潜在方法是开发异质结够Ti-Fe-O(Fe2TiO5)假铁矿。为了揭示单纯的Fe2TiO5是否能够解决TiO2或Fe2O3的固有问题,有效驱动四空穴化学反应,或者TiO2是必需的,以便在两个体系... 

【文章来源】:中国科学院大学(中国科学院过程工程研究所)北京市

【文章页数】:109 页

【学位级别】:博士

【文章目录】:
摘要
Abstract
1. Introduction to Photocatalytic water Splitting and metal Oxides Hollow Spheres
    1.1. Introduction to photocatalytic water splitting
        1.1.1. Mechanism of Semiconductor Photocatalytic Water Splitting
        1.1.2. Photocatalyst structural modification and nanostructuring
    1.2. Introduction to Micro/Nano Inorganic Hollow Materials
        1.2.1. Design and Synthesis Approach to Hollow Spheres
    1.3. Layer by Layer assembly
        1.3.1. Hydrothermal method
        1.3.2. Hollow Spheres with mesoporous Shell (HSMS)
        1.3.3. Precipitation polymerization
        1.3.4. Core Shell Hollow structures
        1.3.5. Soft Templating Approach
        1.3.6. Template free method
    1.4. Limitations of the synthesis methods
    1.5.Carbonaceous microspheres as a hard template to produce multi-shelled hollow spheres
    1.6.Applications of inorganic hollow particles
    1.7. Aim of the work
2. Carbonaceous Microspheres derived from Sucrose
    2.1. Introduction
    2.2. Experimental Setup for the formation of Carbonaceous Microsphere
        2.2.1. General recipe for the synthesis of the carbonaceous spheres
    2.3. Hydrothermal carbonization of sucrose
    2.4. Chemical properties of the carbonaceous spheres sample
        2.4.1. IR and NMR spectra
    2.5. The mechanism of the hydrothermal carbonization of polysaccharide
3. Fe_2TiO_5-TiO_2 Multi-Shelled Hollow Spheres
    3.1 Introduction
    3.2. Experimental
        3.2.1. Experimental Section
        3.2.2. Preparation of multi-shelled Fe_2TiO_5:TiO_2 hetero-structural hollow microspheres
    3.3. XRD and Raman Analysis of as-synthesised wide range of hollow spheres morphologies
    3.4. TEM and SEM Analysis analysis of as-synthesis Multi-Shelled Fe_2TiO_5-TiO_2 composite Hollow Spheres
    3.5. Photocatalytic Charge Transfer Mechanism between Fe_2TiO_5 and TiO_2 composite hollow spheres
    3.6. Conduction and valence band evaluation of Fe_2TiO_5-TiO_2 CDSHS Hollow Spheres Composite
    3.7. Barnet Nitrogen adsorption-desorption isotherm Fe_2TiO_5-TiO_2Multi-Shelled Hollow Spheres
    3.8. XPS analysis Fe_2TiO_5-TiO_2 CDSHS Hollow Spheres Composite
    3.9. Ultraviolet-Visible, Photoluminescence and Performance evolution of as-synthesised Multi-shelled Hollow Spheres morphologies
    3.10. Summary
4. Spatially Separated Fe_2TiO_5-TiO_2 Yolk Shell Hollow Spheres
    4.1. Introduction
    4.2. Experimental
        4.2.1. Materials
        4.2.2 Preparation of Fe_2Ti0_5:TiO_2 hetero-structural yolk shell hollow microspheres
    4.3. Results and Discussion
    4.4. Formation Mechanism of Fe_2TiO-5-TiO_2 Yolk Shell morphology
    4.5. Conclusion
5. Versatility of Carbonaceous Microspheres
    5.1. Introduction
    5.2. Experimental
        5.2.1. Materials
        5.2.2. Synthesis of multi-shelled hollow microspheres
        5.2.3. Synthesis of multi-shelled TiO_2 hollow spheres
        5.2.4. Synthesis of multi-shelled Fe_2O_3 hollow spheres
        5.2.5. Synthesis of multi-shelled Co_3_O_4 hollow spheres
        5.2.6. Synthesis of multi-shelled NiO hollow spheres
        5.2.7. Synthesis of Mn_2O_3 hollow spheres
        5.2.8. Synthesis of multi-shelled Fe_2TiO_5-TiO_2-Ag_2O hollow spheres
    5.3. Characterization of as-synthesised Multi-shelled hollow spheres
        5.3.1. Morphology and structure
        5.3.2. X-ray diffraction (XRD)
    5.4. Mixed metal oxides hollow spheres
    5.5. Conclusion
6. Summary
References
附件
Abbreviations
Resume and Publications
Acknowledgements


【参考文献】:
期刊论文
[1]In situ introduction of dispersed metallic Ag nanoparticles into the channels of mesoporous carbon CMK-3[J]. Ai Bing Chen Wei Ping Zhang Yong Liu Xiu Wen Han Xin He Bao~* State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China.  Chinese Chemical Letters. 2007(08)
[2]Rapid Fabrication of Hollow SiO2 Spheres with Novel Morphology[J]. Dong Jun WANG1,2, Qun LUO1, Dan Dan JIA2, Xiao Dong LI1, Xin Qiou WANG1, Yong Huang1, Zhen ZHEN1, Xin Hou LIU1,* 1Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101 2Hebei Vocation-technical Teacher?s College, Qinhuangdao 066600.  Chinese Chemical Letters. 2003(12)



本文编号:3564169

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/3564169.html


Copyright(c)文论论文网All Rights Reserved | 网站地图

版权申明:资料由用户cfc1f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱[email protected]