当前位置:主页 > 科技论文 > 化学工程论文 >

Research on LaMnO 3 Perovskite and LaMnO 3 /Graphene Nanocom

发布时间:2024-03-08 04:13
  高性能电化学能量存储器件(高能量密度、功率密度和循环寿命)在能源领域具有广泛应用。其中,混合型电池-超级电容器(HBSD)作为一种新型的储能器件,结合了高能量密度的电池型电极和高功率密度的电容器型电极,具有高电化学性能、高安全性、低成本和环保等诸多优势,在电动汽车、智能电网、电子设备等领域中具有巨大的应用潜力。钙钛矿型氧化物LaMnO3(LMO)被证实能够容纳大量的氧离子和其他阳离子空位,从而显著增加电荷存储能力,是一种有效的储能材料。然而,由于LMO固有的低离子/电子导电性,导致低倍率、容量快速衰减和低循环稳定性等问题。因此,开发具有高能量/功率密度,以及循环稳定的LMO材料仍是一个重大挑战。另一方面,还原氧化石墨烯(rGO)由于高电导率和大比表面积,作为HBSD的电容器型电极材料得到广泛研究。本文设计并开发了一种新型的混合电池-超级电容器装置,其中rGO作为电容器型电极,LMO复合材料作为电池型电极。在构建混合装置之前,对电容器电极和电池电极的性能也进行了如下优化:对于电容型电极(rGO),使用肼(H-rGO)和氨(U-rGO)对rGO分别进行还原。电化学测试...

【文章页数】:127 页

【学位级别】:博士

【文章目录】:
摘要
ABSTRACT
CHAPTER1 Introduction
    1.1 Overview
    1.2 Electrode materials for HBSD
        1.2.1 Supercapacitor and its electrode materials
        1.2.2 Electrical Double Layer capacitor EDLC
            (1)Working principle
            (2)Typical electrode materials for EDLC
        1.2.3 Pseudocapacitance
            (1)Working principle
            (2)Typical electrode materials for pseudocapacitor
    1.3 Battery electrode materials
        (1)Working principle
        (2)Typical electrode materials for battery
    1.4 Electrochemical characteristics of supercapacitor and battery electrodes
    1.5 Graphene
        1.5.1 Brief introduction
        1.5.2 Synthesis of graphene
    1.6 LaMnO3 perovskite oxide
        1.6.1 Perovskite oxides
        1.6.2 LaMnO3 perovskite oxide as energy storage materials
        1.6.3 Synthesis of LaMnO3 perovskite
    1.7 Challenges and proposed approaches
        1.7.1 Optimization of LMO synthesis parameters
        1.7.2 Modulation of the charging mechanisms of LMO
        1.7.3 Structural design by compositing with graphene
    1.8 Objective
CHAPTER2 Synthesis of reduced graphene oxide as a capacitor electrode
    2.1 Introduction
    2.2 Experimental
        2.2.1 Preparation of graphene oxide GO
        2.2.2 Preparation of reduced graphene oxide
        2.2.3 Electrochemical characterization
    2.3 Results and discussion
        2.3.1 XRD and surface area
        2.3.2 Morphology
        2.3.3 Electrochemical properties
    2.4 Conclusions
CHAPTER3 Optimization of LaMnO3 perovskite synthesis parameters
    3.1 Introduction
    3.2 Experimental
        3.2.1 Preparation of LMO perovskite
        3.2.2 Parameters and their levels used in the Taguchi method
        3.2.3 Characterizations
        3.2.4 Fabrication of electrodes
    3.3 Results and discussion
        3.3.1 Formation and structure of LMO perovskite
        3.3.2 Electrochemical properties
        3.3.3 Analysis by the Taguchi method
        3.3.4 Morphology and surface area of the Validation sample
        3.3.5 Phase structure and chemical analysis
        3.3.6 Electrochemical properties
    3.4 Conclusions
CHAPTER4 Three-dimensional nitrogen-doped graphene wrapped LaMnO3 nanocomposites
    4.1 Introduction
    4.2 Experimental
        4.2.1 Preparation of N-rGO
        4.2.2 Preparation of LMO/N-rGO composites
        4.2.3 Electrochemical characterization
    4.3 Results and Discussion
        4.3.1 Surface morphology and BET surface area
        4.3.2 Phase structure and chemical state analysis
        4.3.3 Electrochemical properties
    4.4 Conclusions
CHAPTER5 Mn Nonstoichiometric effects on the capacity behavior of LaMnO3 Perovskite
    5.1 Introduction
    5.2 Experimental Section
        5.2.1 Preparation of the perovskite powder
        5.2.2 Characterization
        5.2.3 Electrodes fabrication and electrochemical measurements
    5.3 Results and discussion
        5.3.1 Morphology and surface area
        5.3.2 Phase structure and chemical analysis
        5.3.3 Electrochemical properties
    5.4 Conclusions
CHAPTER6 Fabrication of high-performance hybrid battery-supercapacitor device based on Graphene-Encapsulated Nonstoichiometric LaMnO3 Perovskite
    6.1 Introduction
    6.2 Experimental
        6.2.1 Preparation of LM1.1O/rGO nanocomposite
        6.2.2 Fabrication of the HBSD device
        6.2.3 Electrochemical characterization
    6.3 Results and discussion
        6.3.1 Surface morphology
        6.3.2 Phase structure and BET surface area
        6.3.3 Electrochemical properties
        6.3.4 Hybrid supercapacitor based on LM1.1O/rGO nanocomposite and rGO
    6.4 Conclusions
CHAPTER7 Summary and recommendations
    7.1 Summary
    7.2 Recommendations for Future Research
APPENDIX A.Taguchi method
    1.Overview
    2.Taguchi methodology and experiment process
Acknowledgements
List of publications
References



本文编号:3921992

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/3921992.html


Copyright(c)文论论文网All Rights Reserved | 网站地图

版权申明:资料由用户c5820***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱[email protected]